An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.

نویسندگان

  • D O Krause
  • J B Russell
چکیده

Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clostridium aminophilum was monensin sensitive in vitro, but C. aminophilum persisted in the rumen after monensin was added to the diet. An in vitro culture system was developed to assess the competition of C. aminophilum, P. anaerobius, and C. sticklandii with predominant ruminal bacteria (PRB). PRB were isolated from a 10(8) dilution of ruminal fluid and maintained as a mixed population with a mixture of carbohydrates. PRB did not hybridize with the probes to C. aminophilum, P. anaerobius, or C. sticklandii. PRB deaminated Trypticase in continuous culture, but the addition of C. aminophilum, P. anaerobius, and C. sticklandii caused a more-than-twofold increase in the steady-state concentration of ammonia. C. aminophilum, P. anaerobius, and C. sticklandii accounted for less than 5% of the total 16S rRNA and microbial protein. Monensin eliminated P. anaerobius and C. sticklandii from continuous cultures, but it could not inhibit C. aminophilum. The monensin resistance of C. aminophilum was a growth rate-dependent, inoculum size-independent phenomenon that could not be maintained in batch culture. On the basis of these results, we concluded that the feed additive monensin cannot entirely counteract the wasteful amino acid deamination of obligate amino acid-fermenting ruminal bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil

Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...

متن کامل

Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production.

When ruminal bacteria from a cow fed hay were serially diluted into an anaerobic medium that had only peptides and amino acids as energy sources, little growth or ammonia production was detected at dilutions greater than 10(-6). The 10(-8) and 10(-9) dilutions contained bacteria that fermented carbohydrates, and some of these bacteria inhibited Clostridium sticklandii SR, an obligate amino acid...

متن کامل

Effect of Dietary Protein Sources on Lamb’s Performance: A Review

Protein and energy are the two major components of feed that influence performance of the growing and fattening lambs. Provision of the quality of protein in the lamb’s diet does not only improve the animal performance but also ensures profitable animal production. Different vegetable protein sources are used to formulate the rations for growing and fattening lambs. These protein sources differ...

متن کامل

Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids

Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...

متن کامل

Purification and Properties of Crystalline Anaerobes , atrobacter sp . Strain YG - 05043 - Methylaspartase from Two Facultative and Morganella morganii Strain YG - 0601

3-Methylaspartase (3-methylaspartate ammonia-lyase, EC 4.3.1.2) from two facultatiye anaerobes from soil, atrobacter sp. strain YG-0504 and Morganetla morganii strain YG-0601, were purified and crystallized from their crude extracts. Both of the Citrobacter and Mbrganetld enzymes appeared to be a dimer of subunits of M; 40,OOO and 44,OOO, respectively. The enzymes had similar enzymological prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 1996